
- Dense assembly (OD 5-7 mm) with
 - ◆ Twisted pairs: total 21; 44-pin 0.625 mm dual row Omnetics connector
 - differential signals
 - single-ended signals
 - · Temperature, voltage sensing, spares
 - Common shield
 - Connectors can be purchased terminated with twisted pairs
 - Power and HV lines
 - Clock mini-coaxial cables
- Round cross section easy to route between Junction Cards and Adapter Cards

Junction Card

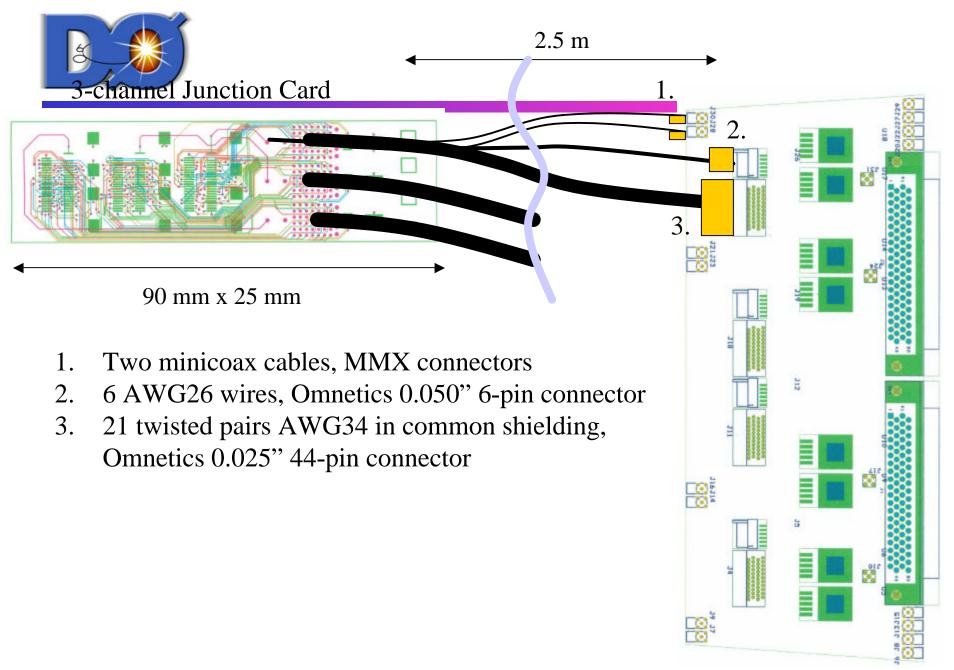
Hybrid - Jumper Cable - Junction Card - Twisted Pair Cable - Adapter Card

- L0-1: 3 hybrids → junction card
 L2-5: 2 hybrids → junction card
- 50-pin AVX connectors,
- Twisted pairs are soldered to JC, cards are extensions of cable bundles
- Dimensions 97 (70) mm x 25 mm
- Location : near present H-disks
- Designed by Kansas State
- Prototypes received in May 2002

Twisted Pair Cable

Hybrid - Jumper Cable - Junction Card - Twisted Pair Cable - Adapter Card

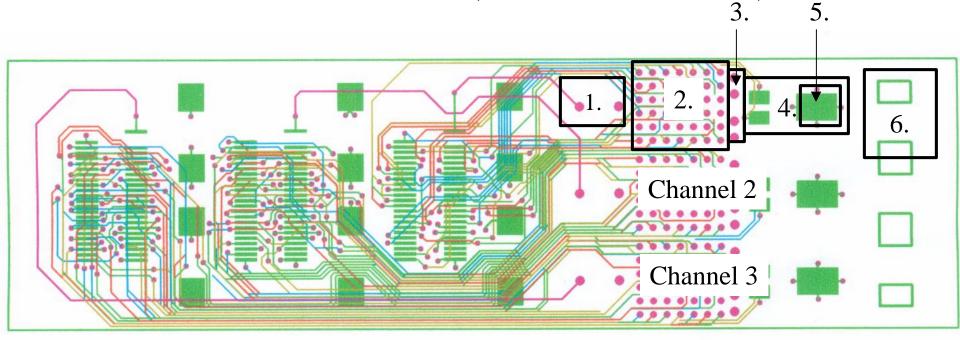
- Consists of
 - ◆ Power & HV lines : 6-pin Omnetics connector
 - Signal pairs: 44-pin Omnetics connector
 - Clock coaxes
- Designed by Fermilab
- All parts (connectors, pairs) received for prototype cables
- Prototypes ready



Adapter Card

Hybrid - Jumper Cable - Junction Card - Twisted Pair Cable - Adapter Card

- Adapter Card is active :
 - Two voltage regulators per hybrid: analog and digital voltages
 - ◆ Differential-to-Single-Ended 2.5to-5 V translation for SVX4 Data
 - ♦ 5-to-2.5 V translation for SVX4 Controls
 - Routing of Clock and HV
- Four rings of Adapter Cards at two ends of calorimeter
- Designed by Kansas State
- Several iterations on design
- Prototypes ready

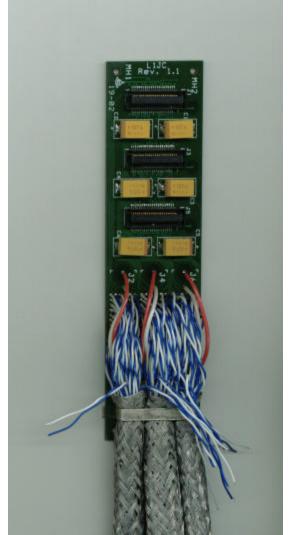

4-channel Adapter Card

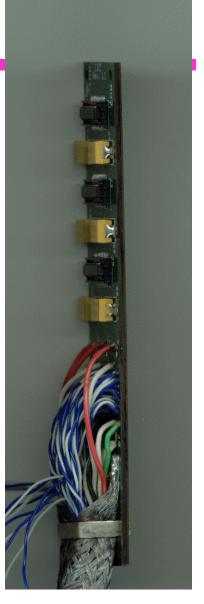
Channel 1

- 1. AWG26 HV field
- 2. AWG34 pair field
- 3. AWG26 LV field
- 4. Submini coax field
- 5. Common shielding field
- 6. Restrain field

(same for channels 2 and 3)

Twisted Pair Cable


Status


- Received all parts in August
 - · (Almost) same design for signal part as CDF
- Have 3 assemblies
 - Fermilab : one channel (B.Jones) used for full chain tests
 - KSU: one channel used for full chain tests
 - BINP Novosibirsk : 3 channels vendor qualification, will be used at 1% stand
- Discussing with CDF next prototype of signal cable
 - 27 twisted pairs: enough for 4 doubles for single ended signals
- How to proceed with cable assembly?
 - Options: solder signal cable at Junction Card or have a connector?
 - Need EE or ET to help with design

Twisted Pair Cable

- BINP Novosibirsk assembly
 - Admitted difficulties
 - Looks ok
 - Needs testing

CDF designed TPC (Wayne State responsible)

Table 2. Signal Cable Characteristics

,			
1/	0000		
			7
			<u> </u>
`		4	2 3 2

Number of twisted pairs	24	
Wire conductor	34 AWG, strand	
Total radiation dose	5 Mrad	
Maximum overall diameter	< 4.5 mm	
Voltage rating	50 V	
Temperature rating	-10 to 100°C	
Drain wire	34 AWG, strand, laid parallel under shield	
Shielding thickness	> 200 µm	
Length (total)	3000 to 4000 feet	

- 1. Twisted pair
- 2. Drain wire
- 3. Shielding
- 4. Insulation

Figure 4. Sketch of the Signal Cable